I'm stuck in Amsterdam because of an erupting volcano. We're staying on a barge- very quaint,but the rooms are tiny. I was lying awake, wondering what time it was because my phone has run out of battery. Was it 4am or 12 noon? When should I wake my friends? How to tell how much time was passing? It's not that easy- I remember seeing a competition where people had to judge an hour without watches, and one guy made a bet at half an hour.
It occur to me that singing songs in my head was a good way of keeping time. Instead of counting seconds, I'll count songs. I'll give it two 'beat it's and a 'torn' before waking them, I thought. Then, I thought about the evolution of language conference we visited this week. People were always coming up with theories about the adaptive advantage of language. What if it was useful for measuring waiting time?why would you want to?
In the Miocene, the environment started to dry out, leading to a thinning of resources. This meant that primates either had to reduce their group size or travel further more efficiently in order to find enough food. Our ancestors chose the second option (this theory put forwards by Isbell & Young, 1996).
Now, imagine yourself as part of a large group who travel big distances in forests. Inevitably, you're going to split up. You won't be able to contact them, so you have to decide to wait or move on. In a foreign city with no phone battery, I've been in this situation many times his week. The best hing to do is wait for a while, then move on. But how long? And how to measure?
Singing! And the more complex the song, the less the number of repetitions you have to keep track of. I remember now a piece of child psychology where you tell a child they can have one biscuit now or wait 10 minutes and have two. Intelligent kids will sing to themselves to pass the time.
So there we go, language evolved under an adaptive pressure to accurately measure small periods of time. There are a billion holes in this theory. For example, the sun is a pretty good indication of the time. Also, it's not clear that this ability is any use.
Anyway, we might get a few papers, a book and a conference out of it.
It occur to me that singing songs in my head was a good way of keeping time. Instead of counting seconds, I'll count songs. I'll give it two 'beat it's and a 'torn' before waking them, I thought. Then, I thought about the evolution of language conference we visited this week. People were always coming up with theories about the adaptive advantage of language. What if it was useful for measuring waiting time?why would you want to?
In the Miocene, the environment started to dry out, leading to a thinning of resources. This meant that primates either had to reduce their group size or travel further more efficiently in order to find enough food. Our ancestors chose the second option (this theory put forwards by Isbell & Young, 1996).
Now, imagine yourself as part of a large group who travel big distances in forests. Inevitably, you're going to split up. You won't be able to contact them, so you have to decide to wait or move on. In a foreign city with no phone battery, I've been in this situation many times his week. The best hing to do is wait for a while, then move on. But how long? And how to measure?
Singing! And the more complex the song, the less the number of repetitions you have to keep track of. I remember now a piece of child psychology where you tell a child they can have one biscuit now or wait 10 minutes and have two. Intelligent kids will sing to themselves to pass the time.
So there we go, language evolved under an adaptive pressure to accurately measure small periods of time. There are a billion holes in this theory. For example, the sun is a pretty good indication of the time. Also, it's not clear that this ability is any use.
Anyway, we might get a few papers, a book and a conference out of it.
Isbell, L. A., & Young T. P. (1996). The evolution of bipedalism in hominids and reduced group size in chimpanzees: alternative responses to decreasing resource availability Journal of Human Evolution, 30 (5), 389-397 DOI: 10.1006/jhev.1996.0034